Home > Big news > News > Oak Ridge Turns to Deep Learning for Big Data Problems
Oak Ridge Turns to Deep Learning for Big Data Problems

 

A team of researchers from Oak Ridge National Laboratory has been awarded nearly $2 million over three years from the Department of Energy to explore the potential of machine learning in revolutionizing scientific data analysis.

While deep learning has long been used to classify relatively simple data such as photographs, today’s scientific data presents a much greater challenge because of its size and complexity. Deep learning offers the potential to truly change the way in which researchers use massive datasets to solve challenges spanning the scientific spectrum.

For example, neutron scattering data collected at ORNL’s Spallation Neutron Source contain rich scientific information about structure and dynamics of materials under investigation, and deep learning could help researchers better understand the link between experimental data and materials properties.

The team aims to revolutionize current analysis paradigms by using deep learning to identify patterns in scientific data that alert scientists to potential new discoveries. Their novel high-performance computing methods will leverage ORNL’s Titan supercomputer, the nation’s most powerful for open science.

Potok’s team plans to construct a deep learning network capable of deciphering data from hundreds of thousands of inputs, such as sensors, and learning from the complex matrices of sensor readings developed over time. ORNL’s rich history of machine learning research, broad range of analytic expertise, and world-class computing resources such as Titan create an ideal setting for such research.

The researchers recently outlined their approach to deep learning in a paper titled “A study of complex deep learning networks on high performance, neuromorphic, and quantum computers” in the Proceedings of the Workshop on Machine Learning in High Performance Computing Environments.

This article was originally published on insidehpc.com and can be viewed in full

(0)(0)